Infrastructure News

Coastal engineering infrastructure impacts Blue Carbon habitats distribution and ecosystem functions

[ad_1]

  • Lotze, H. K. et al. Depletion degradation, and recovery potential of estuaries and coastal seas. Science (80-). 312, 1806–1809 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Martínez, M. L. et al. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 63, 254–272 (2007).

    Google Scholar 

  • Lotze, H. K. Historical reconstruction of human-induced changes in US estuaries. Oceanogr. Mar. Biol. An Annu. Rev. 48, 267–338 (2010).

    Google Scholar 

  • Barbier, E. B., Hacker, S. D. & Kennedy, C. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Google Scholar 

  • Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).

    ADS 
    CAS 

    Google Scholar 

  • McLeod, E. et al. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Google Scholar 

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, (2003).

  • Nellemann, C. et al. Blue Carbon. The role of healthy oceans in binding carbon. (Birkeland Trykkeri AS., 2009).

  • Shepard, C. C., Crain, C. M. & Beck, M. W. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS One 6, (2011).

  • Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Temmerman, S., Govers, G., Wartel, S. & Meire, P. Modelling estuarine variations in tidal marsh sedimentation: Response to changing sea level and suspended sediment concentrations. Mar. Geol. 212, 1–19 (2004).

    ADS 

    Google Scholar 

  • Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 1–11 (2019).

    ADS 

    Google Scholar 

  • Johnston, R. J., Grigalunas, T. A., Opaluch, J. J., Mazzotta, M. & Diamantedes, J. Valuing estuarine resource services using economic and ecological models: The Peconic Estuary System study. Coast. Manag. 30, 47–65 (2002).

    Google Scholar 

  • Bowgen, K. M., Stillman, R. A. & Herbert, R. J. H. Predicting the effect of invertebrate regime shifts on wading birds: Insights from Poole Harbour UK. Biol. Conserv. 186, 60–68 (2015).

    Google Scholar 

  • Burton, N. H. K., Rehfisch, M. M., Clark, N. A. & Dodd, S. G. Impacts of sudden winter habitat loss on the body condition and survival of redshank Tringa totanus. J. Appl. Ecol. 43, 464–473 (2006).

    Google Scholar 

  • Bulmer, R. H. et al. Blue carbon stocks and cross-habitat subsidies. Front. Mar. Sci. 7, 1–9 (2020).

    Google Scholar 

  • Adam, P. Saltmarshes in a time of change. Environ. Conserv. 29, 39–61 (2002).

    Google Scholar 

  • Phang, V. X. H., Chou, L. M. & Friess, D. A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Process. Landforms 40, 1387–1400 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. Oceanogr. Mar. Biol. 45, 345–405 (2007).

    Google Scholar 

  • Davis, N., VanBlaricom, G. R. & Dayton, P. K. Man-made structures on marine sediments: Effects on adjacent benthic communities. Mar. Biol. 70, 295–303 (1982).

    Google Scholar 

  • Masselink, G. & Russell, P. Impacts of climate change on coastal erosion. MCCIP Sci. Rev. 1, 71–86 (2013).

    Google Scholar 

  • Dugan, J., Airoldi, L., Chapman, M., Walker, S., Schlader, T. Estuarine and costal structures: Environmental effects a focus on shore and nearshore structures. Treatise Estuar. Coast. Struct. Environ. Eff. A Focus Shore Nearshore Struct. 8, 17–41 (2011).

  • Airoldi, L. et al. An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coast. Eng. 52, 1073–1087 (2005).

    Google Scholar 

  • Martin, D. et al. Ecological impact of coastal defence structures on sediment and mobile fauna: Evaluating and forecasting consequences of unavoidable modifications of native habitats. Coast. Eng. 52, 1027–1051 (2005).

    Google Scholar 

  • French, J. Tidal marsh sedimentation and resilience to environmental change: Exploratory modelling of tidal, sea-level and sediment supply forcing in predominantly allochthonous systems. Mar. Geol. 235, 119–136 (2006).

    ADS 

    Google Scholar 

  • Boorman, L., Hazelden, J. & Boorman, M. New salt marshes for old – salt marsh creation and management. Litoral 2002, Chang. Coast, EUROCOAST/EUCC 35–45 (2002).

  • Adam, P. Morecambe Bay saltmarshes: 25 years of change. in British Saltmarshes 81–107 (Tresaith, UK: Forrest Text, 2000).

  • Valiela, I. et al. Transient coastal landscapes: Rising sea level threatens salt marshes. Sci. Total Environ. 640–641, 1148–1156 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Yang, W. et al. Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China. Appl. Soil Ecol. 110, 1–11 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Chapman, M. & Underwood, A. J. Comparative effects of urbanisation in marine and terrestrial habitats. in Ecology of Cities and Towns: A Comparative Approach (eds. McDonnell, M. J., Hahs, A. K. & Breuste, J. H.) 51–70 (Cambridge University Press, Cambridge, 2009).

  • Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 0123456789, (2021).

  • Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Serrano, O., Lavery, P. S., Bongiovanni, J. & Duarte, C. M. Impact of seagrass establishment, industrialization and coastal infrastructure on seagrass biogeochemical sinks. Mar. Environ. Res. 160, 104990 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Flor, G. & Flor-Blanco, G. Transformaciones morfosedimentarias de la bahía estuarina de Santander relacionadas con el desarrollo portuario y urbano (Cantabria, NO de España) Morphosedimentary transformations of the Santander estuarine bay related to port and urban development (Cant. Trab. Geol. 36, 139 (2016).

    Google Scholar 

  • Delafontaine, M. T., Bartholomä, A., Flemming, B. W. & Kurmis, R. Volume-specific dry POC mass in surficial intertidal sediments: A comparison between biogenic muds and adjacent sand flats. Senckenb. Marit 26, 167–178 (1996).

    Google Scholar 

  • vanKeulen, M. & Borowitzka, M. A. Seasonal variability in sediment distribution along an exposure gradient in a seagrass meadow in Shoalwater Bay, Western Australia. Estuar. Coast. Shelf Sci. 57, 587–592 (2003).

  • Kelleway, J. J., Saintilan, N., Macreadie, P. I. & Ralph, P. J. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems 19, 865–880 (2016).

    CAS 

    Google Scholar 

  • Radabaugh, K. et al. Coastal blue carbon assessment of mangroves, salt marshes and salt barrens in Tampa Bay, Florida, USA. Estuaries and Coasts 41, (2017).

  • Macreadie, P. I. et al. Carbon sequestration by Australian tidal marshes. Sci. Rep. 7, 44071 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphey, P. L. & Fonseca, M. S. Role of high and low energy seagrass beds as nursery areas for Penaeus duorarum in North Carolina. Mar. Ecol. Prog. Ser. 121, 91–98 (1995).

    ADS 

    Google Scholar 

  • Van Keulen, M. & Borowitzka, M. A. Seasonal variability in sediment distribution along an exposure gradient in a seagrass meadow in Shoalwater Bay Western Australia. Estuar. Coast. Shelf Sci. 57, 587–592 (2003).

    ADS 

    Google Scholar 

  • Vinagre, C., Salgado, J., Costa, M. J. & Cabral, H. N. Nursery fidelity, food web interactions and primary sources of nutrition of the juveniles of Solea solea and S. senegalensis in the Tagus estuary (Portugal): A stable isotope approach. Estuar. Coast. Shelf Sci. 76, 255–264 (2008).

    ADS 

    Google Scholar 

  • Khan, N. S. et al. The application of δ13C, TOC and C/N geochemistry to reconstruct Holocene relative sea levels and paleoenvironments in the Thames Estuary UK. J. Quat. Sci. 30, 417–433 (2015).

    Google Scholar 

  • Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Román, M., Rendal, S., Fernández, E. & Méndez, G. Seasonal variability of the carbon and nitrogen isotopic signature in a Zostera Noltei meadow at the NW Iberian Peninsula. Wetlands 38, 739–753 (2018).

    Google Scholar 

  • Santos, R. et al. Superficial sedimentary stocks and sources of carbon and nitrogen in coastal vegetated assemblages along a flow gradient. Sci. Rep. 9, 1–12 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chmura, G. L. What do we need to assess the sustainability of the tidal salt marsh carbon sink?. Ocean Coast. Manag. 83, 25–31 (2013).

    Google Scholar 

  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 12 (2003).

    Google Scholar 

  • Ricart, A. M. et al. High variability of blue carbon storage in seagrass meadows at the estuary scale. Sci. Rep. 10, 1–12 (2020).

    ADS 

    Google Scholar 

  • Tognin, D., D’Alpaos, A., Marani, M. & Carniello, L. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon. Nat. Geosci. 14, 906–911 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Reed, D. J. The response of coastal marshes to sea-level rise: Survival or submergence?. Earth Surf. Process. Landforms https://doi.org/10.1002/esp.3290200105 (1995).

    Article 

    Google Scholar 

  • Miller, W. D., Neubauer, S. C. & Anderson, I. C. Effects of sea level induced disturbances on high salt marsh metabolism. Estuaries 24, 357–367 (2001).

    Google Scholar 

  • Chust, G. et al. Human impacts overwhelm the effects of sea-level rise on Basque coastal habitats (N Spain) between 1954 and 2004. Estuar. Coast. Shelf Sci. 84, 453–462 (2009).

    ADS 

    Google Scholar 

  • Smith, S. M. Vegetation change in salt marshes of cape cod national seashore (Massachusetts, USA) between 1984 and 2013. Wetlands 35, 127–136 (2015).

    Google Scholar 

  • Arias-Ortiz, A. et al. Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems – Setting the record straight. Biogeosciences 15, 6791–6818 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Gómez, A. G., Juanes, J. A., Ondiviela, B. & Revilla, J. A. Assessment of susceptibility to pollution in littoral waters using the concept of recovery time. Mar. Pollut. Bull. 81, 140–148 (2014).

    PubMed 

    Google Scholar 

  • Juanes, J. A. et al. Santander bay: Multiuse and multiuser socioecological space. Reg. Stud. Mar. Sci. 34, 101034 (2020).

    Google Scholar 

  • Cendrero, A., Días de Terán, J. R. & Salinas, J. M. Environmental-economic evaluation of the filling and reclamation process in the bay of Santander Spain. Environ. Geol. 3, 325–336 (1981).

    ADS 

    Google Scholar 

  • Pellón, E., Garnier, R. & Medina, R. Intertidal finger bars at El Puntal, bay of Santander, Spain: Observation and forcing analysis. Earth Surf. Dyn. 2, 349–361 (2014).

    ADS 

    Google Scholar 

  • Krishnaswamy, S., Lal, D., Martin, J. M. & Meybeck, M. Geochronology of lake sediments. Earth Planet. Sci. Lett. 11, 407–414 (1971).

    ADS 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link