Cement News

Fabrication of polyamide-12/cement nanocomposite and its testing for different dyes removal from aqueous solution: characterization, adsorption, and regeneration studies

[ad_1]

  • Baig, U., Uddin, M. K. & Gondal, M. A. Removal of hazardous azo dye from water using synthetic nano adsorbent: Facile synthesis, characterization, adsorption, regeneration and design of experiments. Colloids Surf. A Physicochem. Eng. Asp. 584, 124031 (2020).

    CAS 

    Google Scholar 

  • Uddin, M. K., Mashkoor, F., Al-Arifi, I. & Nasar, A. Simple one-step synthesis process of novel MoS2@bentonite magnetic nanocomposite for efficient adsorption of crystal violet from aqueous solution. Mater. Res. Bull. https://doi.org/10.1016/j.materresbull.2021.111279 (2021).

    Article 

    Google Scholar 

  • Uddin, M. K. & Bushra, R. Synthesis and characterization of composite cation-exchange material and its application in removing toxic pollutants. Enhancing Cleanup of Environ. Pollut. https://doi.org/10.1007/978-3-319-55423-5_9 (2017).

    Article 

    Google Scholar 

  • Khan, M. A., Uddin, M. K., Bushra, R., Ahmad, A. & Nabi, S. A. Synthesis and characterization of polyaniline Zr(IV) molybdophosphate for the adsorption of phenol from aqueous solution. React. Kinet. Mech. Catal. 113, 499–517 (2014).

    CAS 

    Google Scholar 

  • Uddin, M. K. & Baig, U. Synthesis of Co3O4 nanoparticles and their performance towards methyl orange dye removal: Characterisation, adsorption and response surface methodology. J. Clean. Prod. 211, 1141–1153 (2019).

    CAS 

    Google Scholar 

  • Baig, U., Uddin, M. K. & Sajid, M. Surface modification of TiO2 nanoparticles using conducting polymer coating: Spectroscopic, structural, morphological characterization and interaction with dye molecules. Mater. Today Commun. 25, 101534 (2020).

    CAS 

    Google Scholar 

  • Husein, D. Z., Uddin, M. K., Ansari, M. O. & Ahmed, S. S. Green synthesis, characterization, application and functionality of nitrogen-doped MgO/graphene nanocomposite. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-12628-z (2021).

    Article 

    Google Scholar 

  • Alarifi, I. M., Al-Ghamdi, Y. O., Darwesh, R., Ansari, M. O. & Uddin, M. K. Properties and application of MoS2 nanopowder: Characterization, Congo red dye adsorption, and optimization. J. Mater. Res. Technol. 13, 1169–1180 (2021).

    CAS 

    Google Scholar 

  • Qamar, M. A. et al. Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiations. Colloids Surf. A Physicochem. Eng. Asp. 614, 126176 (2021).

    CAS 

    Google Scholar 

  • Qamar, M. A. et al. Designing of highly active g-C3N4/Co@ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the organic pollutants from wastewater under visible light. J. Environ. Chem. Eng. 9, 105534 (2021).

    CAS 

    Google Scholar 

  • Javed, M., Qamar, M. A., Shahid, S., Alsaab, H. O. & Asif, S. Highly efficient visible light active Cu–ZnO/S-g-C 3 N 4 nanocomposites for efficient photocatalytic degradation of organic pollutants. RSC Adv. 11, 37254–37267 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, S. A. et al. Synthesis of TiO2/graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin. Compos. B Eng. 175, 107120 (2019).

    CAS 

    Google Scholar 

  • Khan, S. A., Shahid, S., Shahid, B., Fatima, U. & Abbasi, S. A. Green synthesis of MnO nanoparticles using Abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities. Biomolecules 10, 785 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Nadeem, S. et al. Kinetic and isothermal studies on the adsorptive removal of direct yellow 12 dye from wastewater using propionic acid treated bagasse. ChemistrySelect 6, 12146–12152 (2021).

    CAS 

    Google Scholar 

  • Han, J., Cao, Z. & Gao, W. Remarkable sorption properties of polyamide 12 microspheres for a broad-spectrum antibacterial (triclosan) in water. J. Mater. Chem. A 1, 4941 (2013).

    CAS 

    Google Scholar 

  • Bassyouni, D. et al. Fabrication and characterization of electrospun Fe3O4/o-MWCNTs/polyamide 6 hybrid nanofibrous membrane composite as an efficient and recoverable adsorbent for removal of Pb (II). Microchem. J. 149, 103998 (2019).

    CAS 

    Google Scholar 

  • Song, L. et al. Electrospun core-shell polyamide 6/chitosan-Fe3+ composite fibers: An efficient and recyclable adsorbent for removal of antibiotic. Mater. Lett. 185, 286–289 (2016).

    CAS 

    Google Scholar 

  • Zhang, H., Zhu, S., Yang, J., Ma, A. & Chen, W. Enhanced removal efficiency of heavy metal ions by assembling phytic acid on polyamide nanofiltration membrane. J. Membr. Sci. 636, 119591 (2021).

    CAS 

    Google Scholar 

  • Freger, V. & Ramon, G. Z. Polyamide desalination membranes: Formation, structure, and properties. Prog. Polym. Sci. 122, 101451 (2021).

    CAS 

    Google Scholar 

  • Shin, M. G. et al. Critical review and comprehensive analysis of trace organic compound (TOrC) removal with polyamide RO/NF membranes: Mechanisms and materials. Chem. Eng. J. 427, 130957 (2022).

    CAS 

    Google Scholar 

  • Ali, I., Al-Hammadi, S. A. & Saleh, T. A. Simultaneous sorption of dyes and toxic metals from waters using synthesized titania-incorporated polyamide. J. Mol. Liq. 269, 564–571 (2018).

    CAS 

    Google Scholar 

  • Osman, A. M., Hendi, A. H. & Saleh, T. A. Simultaneous adsorption of dye and toxic metal ions using an interfacially polymerized silica/polyamide nanocomposite: Kinetic and thermodynamic studies. J. Mol. Liq. 314, 113640 (2020).

    CAS 

    Google Scholar 

  • Saleh, T. A., Tuzen, M. & Sarı, A. Polyamide magnetic palygorskite for the simultaneous removal of Hg(II) and methyl mercury; with factorial design analysis. J. Environ. Manage. 211, 323–333 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Saleh, T. A., Sarı, A. & Tuzen, M. Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem. Eng. J. 307, 230–238 (2017).

    CAS 

    Google Scholar 

  • Saleh, T. A. & Ali, I. Synthesis of polyamide grafted carbon microspheres for removal of rhodamine B dye and heavy metals. J. Environ. Chem. Eng. 6, 5361–5368 (2018).

    CAS 

    Google Scholar 

  • Basaleh, A. A., Al-Malack, M. H. & Saleh, T. A. Methylene Blue removal using polyamide-vermiculite nanocomposites: Kinetics, equilibrium and thermodynamic study. J. Environ. Chem. Eng. 7, 103107 (2019).

    CAS 

    Google Scholar 

  • Md. Mamun Kabir, S. & Koh, J. Dyeing chemicals. In Chemistry and Technology of Natural and Synthetic Dyes and Pigments (eds Kabir, S. M. M. & Koh, J.) (IntechOpen, 2020). https://doi.org/10.5772/intechopen.81438.

    Chapter 

    Google Scholar 

  • Mittal, A., Kaur, D. & Mittal, J. Applicability of waste materials—Bottom ash and deoiled soya—As adsorbents for the removal and recovery of a hazardous dye, brilliant green. J. Colloid Interface Sci. 326, 8–17 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • National Center for Biotechnology Information. PubChem Compound Summary for CID 6099, Methylene Blue. https://pubchem.ncbi.nlm.nih.gov/compound/Methylene-blue (2022) (Accessed 22 January 2022).

  • Prashant, R. & Jyothi, S. Methylene blue: Revisited. J. Anaesth. Clin. Pharmacol. 26, 517–520 (2010).

    Google Scholar 

  • Dewachter, P., Mouton-Faivre, C., Trchot, P., Lleu, J.-C. & Mertes, P. M. Severe anaphylactic shock with methylene blue instillation. Anesth. Analg. 101, 149–150 (2005).

    PubMed 

    Google Scholar 

  • Sharma, S., Sharma, S., Upreti, N. & Sharma, K. P. Monitoring toxicity of an azo dye methyl red and a heavy metal Cu, using plant and animal bioassays. Toxicol. Environ. Chem. 91, 109–120 (2009).

    CAS 

    Google Scholar 

  • Uddin, M. K. & Rahaman, P. A study on the potential applications of rice husk derivatives as useful adsorptive material. In Inorganic Pollutants in Wastewater. Methods of Analysis, Removal and Treatment (eds Inamuddin, M. A. & Asiri, A. M.) 149–186 (Materials Research Forum LLC, 2017). https://doi.org/10.21741/9781945291357-4.

    Chapter 

    Google Scholar 

  • Uddin, M. K., Ahmed, S. S. & Naushad, M. A mini update on fluoride adsorption from aqueous medium using clay materials. Desalin. Water Treat. 145, 232–248 (2019).

    CAS 

    Google Scholar 

  • Uddin, M. K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017).

    CAS 

    Google Scholar 

  • Wang, A. et al. Adsorption behavior of Congo red on a carbon material based on humic acid. New J. Chem. 46, 498–510 (2022).

    CAS 

    Google Scholar 

  • Al-Salihi, S., Jasim, A. M., Fidalgo, M. M. & Xing, Y. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere 286, 131769 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Duarte, E. D. V. et al. Ternary adsorption of auramine-O, rhodamine 6G, and brilliant green onto Arapaima gigas scales hydroxyapatite: Adsorption mechanism investigation using CCD and DFT studies. Sustain. Mater. Technol. https://doi.org/10.1016/j.susmat.2022.e00391 (2022).

    Article 

    Google Scholar 

  • Alqarni, S. A. The performance of different AgTiO2 loading into poly(3-nitrothiophene) for efficient adsorption of hazardous brilliant green and crystal violet dyes. Int. J. Polym. Sci. 2022, 1–17 (2022).

    Google Scholar 

  • Mashkoor, F., Khan, M. A. & Nasar, A. Fast and effective confiscation of methylene blue dye from aqueous medium by Luffa aegyptiaca peel. Curr. Anal. Chem. 17, 947–956 (2021).

    CAS 

    Google Scholar 

  • Shi, Y. et al. Magnetic graphene oxide for methylene blue removal: Adsorption performance and comparison of regeneration methods. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-17654-5 (2022).

    Article 

    Google Scholar 

  • Sharma, S. et al. Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. J. Hazard. Mater. 421, 126729 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Tay, W. Y., Ng, L. Y., Ng, C. Y. & Sim, L. C. Removal of methyl red using adsorbent produced from empty fruit bunches by Taguchi approach. IOP Conf. Ser. Earth Environ. Sci. 945, 012014 (2021).

    Google Scholar 

  • Ok, Y., Yang, J., Zhang, Y., Kim, S. & Chung, D. Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J. Hazard. Mater. 147, 91–96 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Rasoulifard, M. H., Khanmohammadi, S. & Heidari, A. Adsorption of cefixime from aqueous solutions using modified hardened paste of Portland cement by perlite; optimization by Taguchi method. Water Sci. Technol. 74, 1069–1078 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Rasoulifard, M. H., Esfahlani, F. H., Mehrizadeh, H. & Sehati, N. Removal of C.I. Basic Yellow 2 from aqueous solution by low-cost adsorbent: Hardened paste of Portland cement. Environ. Technol. 31, 277–284 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Lim, W.-R. et al. Performance of composite mineral adsorbents for removing Cu, Cd, and Pb ions from polluted water. Sci. Rep. 9, 13598 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gadelmoula, A. M. & Aldahash, S. A. Effects of fabrication parameters on the properties of parts manufactured with selective laser sintering: Application on cement-filled PA12. Adv. Mater. Sci. Eng. 2019, 1–9 (2019).

    Google Scholar 

  • Aldahash, S. A. Optimum manufacturing parameters in selective laser sintering of PA12 with white cement additives. Int. J. Adv. Manuf. Technol. 96, 257–270 (2018).

    Google Scholar 

  • Contreras, E. Q. & Althaus, S. M. Design of aromatic polyamides to modify cement performance under triaxial cyclic tests. MRS Commun. 11, 777–782 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Yuan, X., Xu, W., Sun, W., Xing, F. & Wang, W. Properties of cement mortar by use of hot-melt polyamides as substitute for fine aggregate. Materials (Basel) 8, 3714–3731 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Guler, S. The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete. Constr. Build. Mater. 173, 394–402 (2018).

    CAS 

    Google Scholar 

  • Sing, K. S. W. & Williams, R. T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt. Sci. Technol. 22, 773–782 (2004).

    CAS 

    Google Scholar 

  • Sing, K. S. W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985).

    CAS 

    Google Scholar 

  • Gedam, A. H. & Dongre, R. S. Adsorption characterization of Pb(ii) ions onto iodate doped chitosan composite: Equilibrium and kinetic studies. RSC Adv. 5, 54188–54201 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Liu, W. et al. Effect of pore size distribution and amination on adsorption capacities of polymeric adsorbents. Molecules 26, 5267 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baniasadi, H., Trifol, J., Ranta, A. & Seppälä, J. Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerization. Compos. B Eng. 211, 108655 (2021).

    CAS 

    Google Scholar 

  • Belfer, S., Purinson, Y., Fainshtein, R., Radchenko, Y. & Kedem, O. Surface modification of commercial composite polyamide reverse osmosis membranes. J. Membr. Sci. 139, 175–181 (1998).

    CAS 

    Google Scholar 

  • Yin, J., Zhu, G. & Deng, B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 379, 93–101 (2016).

    CAS 

    Google Scholar 

  • Theodosoglou, E., Koroneos, A., Soldatos, T., Zorba, T. & Paraskevopoulos, K. M. Comparative Fourier transform infrared and x-ray powder diffraction analysis of naturally occurred k-feldspars. Bull. Geol. Soc. Greece 43, 2752 (2017).

    Google Scholar 

  • Dinari, M. & Haghighi, A. Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water. Ultrason. Sonochem. 41, 75–84 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Schmid, M., Kleijnen, R., Vetterli, M. & Wegener, K. Influence of the origin of polyamide 12 powder on the laser sintering process and laser sintered parts. Appl. Sci. 7, 462 (2017).

    Google Scholar 

  • Salmoria, G. V., Paggi, R. A., Lago, A. & Beal, V. E. Microstructural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering. Polym. Test. 30, 611–615 (2011).

    CAS 

    Google Scholar 

  • Ribeiro, D. V., Labrincha, J. A. & Morelli, M. R. Potential use of natural red mud as pozzolan for Portland cement. Mater. Res. 14, 60–66 (2011).

    CAS 

    Google Scholar 

  • Jaya, R. P. et al. Physical and chemical properties of cement with nano black rice husk ash. AIP Conf. Proc. https://doi.org/10.1063/1.5124654 (2019).

    Article 

    Google Scholar 

  • Sommereyns, A. et al. Influence of sub-monolayer quantities of carbon nanoparticles on the melting and crystallization behavior of polyamide 12 powders for additive manufacturing. Mater. Des. 201, 109487 (2021).

    CAS 

    Google Scholar 

  • Jaya, R. P. et al. Physical and chemical properties of cement with nano black rice husk ash. AIP Conf. Proc. 2151, 020024 (2019).

    CAS 

    Google Scholar 

  • Nguyen, H.-A., Chang, T.-P., Shih, J.-Y., Chen, C.-T. & Nguyen, T.-D. Sulfate resistance of low energy SFC no-cement mortar. Constr. Build. Mater. 102, 239–243 (2016).

    CAS 

    Google Scholar 

  • Al-Harby, N. F., Albahly, E. F. & Mohamed, N. A. Kinetics, isotherm and thermodynamic studies for efficient adsorption of Congo Red Dye from aqueous solution onto novel cyanoguanidine-modified chitosan adsorbent. Polymers (Basel) 13, 4446 (2021).

    CAS 

    Google Scholar 

  • Goudjil, S., Guergazi, S., Masmoudi, T. & Achour, S. Effect of reactional parameters on the elimination of Congo red by the combination of coagulation-floculation with aluminum sulphate. Desalin. Water Treat. 209, 429–436 (2021).

    CAS 

    Google Scholar 

  • Fiaz, R., Hafeez, M. & Mahmood, R. Removal of brilliant green (BG) from aqueous solution by using low cost biomass Salix alba leaves (SAL): Thermodynamic and kinetic studies. J. Water Reuse Desalin. 10, 70–81 (2020).

    CAS 

    Google Scholar 

  • Uddin, M. K. & Nasar, A. Decolorization of basic dyes solution by utilizing fruit seed powder. KSCE J. Civ. Eng. 24, 345–355 (2020).

    Google Scholar 

  • Yılmaz, E., Sert, E. & Atalay, F. S. Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). J. Taiwan Inst. Chem. Eng. 65, 323–330 (2016).

    Google Scholar 

  • Peng, Y.-G. et al. The preparation of titanium dioxide/palygorskite composite and its application in the adsorption of congo red. Environ. Prog. Sustain. Energy 32, 1090–1095 (2013).

    CAS 

    Google Scholar 

  • Donkadokula, N. Y., Kola, A. K. & Saroj, D. Modelling and optimization studies on decolorization of brilliant green dye using integrated nanofiltration and photocatalysis. Sustain. Environ. Res. 30, 9 (2020).

    Google Scholar 

  • Yadav, S. et al. Cationic dye removal using novel magnetic/activated charcoal/β-cyclodextrin/alginate polymer nanocomposite. Nanomaterials 10, 170 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Zaheer, Z., Al-Asfar, A. & Aazam, E. S. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms, kinetics and mechanisms. J. Mol. Liq. 283, 287–298 (2019).

    CAS 

    Google Scholar 

  • Zaman, S., Mehrab, M. N., Islam, M. S., Ghosh, G. C. & Chakraborty, T. K. Hen feather: A bio-waste material for adsorptive removal of methyl red dye from aqueous solutions. H2Open J. 4, 291–301 (2021).

    Google Scholar 

  • Wanyonyi, W. C., Onyari, J. M. & Shiundu, P. M. Adsorption of Congo red dye from aqueous solutions using roots of Eichhornia crassipes: Kinetic and equilibrium studies. Energy Procedia 50, 862–869 (2014).

    CAS 

    Google Scholar 

  • Mansour, R. A., El Shahawy, A., Attia, A. & Beheary, M. S. Brilliant green dye biosorption using activated carbon derived from guava tree wood. Int. J. Chem. Eng. 2020, 1–12 (2020).

    Google Scholar 

  • Al-Ghouti, M. A. & Al-Absi, R. S. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci. Rep. 10, 15928 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Enenebeaku, C. K., Okorocha, N. J., Enenebeaku, U. E. & Ukaga, I. C. Adsorption and equilibrium studies on the removal of methyl red from aqueous solution using white potato peel powder. Int. Lett. Chem. Phys. Astron. 72, 52–64 (2017).

    Google Scholar 

  • Debnath, P. & Mondal, N. K. Effective removal of Congo red dye from aqueous solution using biosynthesized zinc oxide nanoparticles. Environ. Nanotechnol. Monit. Manage. 14, 100320 (2020).

    Google Scholar 

  • Ghasemian, E. & Palizban, Z. Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon. Int. J. Environ. Sci. Technol. 13, 501–512 (2016).

    CAS 

    Google Scholar 

  • Edokpayi, J. N. & Makete, E. Removal of Congo red dye from aqueous media using Litchi seeds powder: Equilibrium, kinetics and thermodynamics. Phys. Chem. Earth A/B/C 123, 103007 (2021).

    Google Scholar 

  • Ahmad, R. & Ansari, K. Chemically treated Lawsonia inermis seeds powder (CTLISP): An eco-friendly adsorbent for the removal of brilliant green dye from aqueous solution. Groundw. Sustain. Dev. 11, 100417 (2020).

    Google Scholar 

  • Agarwal, S., Gupta, V. K., Ghasemi, M. & Azimi-Amin, J. Peganum harmala L seeds adsorbent for the rapid removal of noxious brilliant green dyes from aqueous phase. J. Mol. Liq. 231, 296–305 (2017).

    CAS 

    Google Scholar 

  • Ghaedi, M., Negintaji, G., Karimi, H. & Marahel, F. Solid phase extraction and removal of brilliant green dye on zinc oxide nanoparticles loaded on activated carbon: New kinetic model and thermodynamic evaluation. J. Ind. Eng. Chem. 20, 1444–1452 (2014).

    CAS 

    Google Scholar 

  • SuklaBaidya, K. & Kumar, U. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. S. Afr. J. Chem. Eng. 35, 33–43 (2021).

    Google Scholar 

  • El-Moselhy, M. M. & Kamal, S. M. Selective removal and preconcentration of methylene blue from polluted water using cation exchange polymeric material. Groundw. Sustain. Dev. 6, 6–13 (2018).

    Google Scholar 

  • Siddiqui, S. H. The removal of Cu2+, Ni2+ and methylene blue (MB) from aqueous solution using Luffa actangula carbon: Kinetics, thermodynamic and isotherm and response methodology. Groundw. Sustain. Dev. 6, 141–149 (2018).

    Google Scholar 

  • Kuang, Y., Zhang, X. & Zhou, S. Adsorption of methylene blue in water onto activated carbon by surfactant modification. Water 12, 587 (2020).

    Google Scholar 

  • Ahmad, M. A., Ahmed, N. B., Adegoke, K. A. & Bello, O. S. Sorption studies of methyl red dye removal using lemon grass (Cymbopogon citratus). Chem. Data Collect. 22, 100249 (2019).

    CAS 

    Google Scholar 

  • Rajoriya, S., Saharan, V. K., Pundir, A. S., Nigam, M. & Roy, K. Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Curr. Res. Green Sustain. Chem. 4, 100180 (2021).

    Google Scholar 

  • Mohamed, H. G., Aboud, A. A. & Abd El-Salam, H. M. Synthesis and characterization of chitosan/polyacrylamide hydrogel grafted poly(N-methylaniline) for methyl red removal. Int. J. Biol. Macromol. 187, 240–250 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Romdhane, D. F., Satlaoui, Y., Nasraoui, R., Charef, A. & Azouzi, R. Adsorption, modeling, thermodynamic, and kinetic studies of methyl red removal from textile-polluted water using natural and purified organic matter rich clays as low-cost adsorbent. J. Chem. 2020, 1–17 (2020).

    Google Scholar 

  • Plazinski, W., Rudzinski, W. & Plazinska, A. Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Adv. Colloid Interface Sci. 152, 2–13 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Javanbakht, V. & Shafiei, R. Preparation and performance of alginate/basil seed mucilage biocomposite for removal of eriochrome black T dye from aqueous solution. Int. J. Biol. Macromol. 152, 990–1001 (2020).

    PubMed 

    Google Scholar 

  • Ojedokun, A. T. & Bello, O. S. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 7, 1965–1977 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Khan, T. A., Chaudhry, S. A. & Ali, I. Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq. 202, 165–175 (2015).

    CAS 

    Google Scholar 

  • Ahmadi, M., Hazrati Niari, M. & Kakavandi, B. Development of maghemite nanoparticles supported on cross-linked chitosan (γ-Fe2O3@CS) as a recoverable mesoporous magnetic composite for effective heavy metals removal. J. Mol. Liq. 248, 184–196 (2017).

    CAS 

    Google Scholar 

  • Patel, H. Elution profile of cationic and anionic adsorbate from exhausted adsorbent using solvent desorption. Sci. Rep. 12, 1665 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X. et al. Graphene/polyamide-6 microsphere composites with high electrical and mechanical performance. Compos. C Open Access 2, 100043 (2020).

    Google Scholar 

  • Suter, J. L., Groen, D. & Coveney, P. V. Mechanism of exfoliation and prediction of materials properties of clay–polymer nanocomposites from multiscale modeling. Nano Lett. 15, 8108–8113 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • [ad_2]

    Source link