IT & ITES News

Carbonation and serpentinization of diopsidite in the Altun Mountains, NW China

[ad_1]

  • Seifritz, W. CO2 disposal by means of silicates. Nature 345, 486–490 (1990).

    Article 
    ADS 

    Google Scholar 

  • Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L. & Sharp, D. H. Carbon dioxide disposal in carbonate minerals. Energy 20, 1153–1170 (1995).

    Article 
    CAS 

    Google Scholar 

  • Oelkers, E. H., Gislason. S. R. & Matter. J. Mineral Carbonation of CO2. Elements 4, 333–337 (2008).

  • Matter, J. M. & Kelemen, P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837–841 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Power, I. M. et al. Carbon mineralization: From natural analogues to engineered systems. Rev. Mineral. Geochem. 77, 305–360 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kelemen, P., Benson, S. M., Pilorgé, H., Psarras, P. & Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 1, 9 (2019).

    Article 

    Google Scholar 

  • Pogge von Strandmann, P. A. E., Burton, K. W., Snæbjörnsdóttir, S. O., Sigfússon, B., Aradóttir, E. S., Gunnarsson, I. et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat. Commun. 10, 1983 (2019).

  • Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article 
    ADS 

    Google Scholar 

  • Rogers, K. L., Neuhoff, P. S., Pedersen, A. K. & Bird, D. K. CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, Weat Greenland. Lithos 92, 55–82 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goldberg, D. S., Takahashi, T. & Slagle, A. L. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl. Acad. Sci. 105, 9920–9925 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shibuya, T. et al. Depth variation of carbon and oxygen isotopes of calcites in Archean altered upperoceanic crust: Implications for the CO2 flux from ocean to oceanic crust in the Archean. Earth Planet. Sci. Lett. 321–322, 64–73 (2012).

    Article 
    ADS 

    Google Scholar 

  • Gislason, S. R. & Oelkers, E. H. Carbon storage in Basalt. Science 344, 373–374 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stockmann, G. J., Wolff-Boenisch, D., Gislason, S. R. & Oelkers, E. H. Do carbonate precipitates affect dissolution kinetics?. Chem. Geol. 337–338, 56–66 (2013).

    Article 
    ADS 

    Google Scholar 

  • Monasterio-Guillot, L., Fernandez-Martinez, A., Ruiz-Agudo, E. & Rodriguez-Navarro, C. Carbonation of calcium-magnesium pyroxenes: Physical-chemical controls and effects of reaction-driven fracturing. Geochim. Cosmochim. Acta 304, 258–280 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Berner, R. A., Sjoberg, E. L., Velbel, M. A. & Krom, M. D. Dissolution of pyroxenes and amphiboles during weathering. Science 80207, 1205–1206 (1980).

    Article 
    ADS 

    Google Scholar 

  • Schott, J., Berner, R. A. & Sjoberg, E. L. Mechanism of pyroxene and amphibole weathering – I Experimental studies of iron-free minerals. Geochim. Cosmochim. Acta 45, 2123–2135 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Petit, J.-C., Delia Mea, G., Dran, J.-C., Schott, J. & Berner, R. A. Mechanism of diopside dissolution from hydrogen depth profiling. Nature 325, 705–707 (1987).

  • Eggleston, C. M., Hochella, M. F. Jr. & Parks, G. A. Sample preparation and aging effects on the dissolution rate and surface composition of diopside. Geochim. Cosmochim. Acta 53, 797–804 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Monasterio-Guillot, L., Rodriguez-Navarro, C. & Ruiz-Agudo, E. Kinetics and mechanisms of acid-pH weathering of pyroxenes. Geochem. Geophys. Geosyst. 22, e2021GC009711 (2021b).

  • Knauss, K. G., Nguyen, S. N. & Weed, H. C. Diopside dissolution kinetics as a function of pH, CO2, temperature, and time. Geochim. Cosmochim. Acta 57, 285–294 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, Y. & Brantley, S. L. Diopside and anthophyllite dissolution at 25° and 90°C and acid pH. Chem. Geol. 147, 233–248 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Golubev, S. V., Pokrovsky, O. S. & Schott, J. Experimental determination of the effect of dissolved CO2 on the dissolution kinetics of Mg and Ca silicates at 25 °C. Chem. Geol. 217, 227–238 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dixit, S. & Carroll, S. A. Effect of solution saturation state and temperature on diopside dissolution. Geochem. Trans. 8, 3 (2007).

    Article 

    Google Scholar 

  • Golubev, S. V. & Pokrovsky, O. S. Experimental study of the effect of organic ligands on diopside dissolution kinetics. Chem. Geol. 235, 377–389 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rigopoulos, I. et al. A method to enhance the CO2storage capacity of pyroxenitic rocks. Greenh. Gases Sci. Technol. 5, 577–591 (2015).

    Article 
    CAS 

    Google Scholar 

  • Velde, B. Experimental pseudomorphism of diopside by talc and serpentine in (Ni, Mg)Cl2 aqueous solutions. Geochim. Cosmochim. Acta 52, 415–424 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Majumdar, A. S., King, H. E., John, T., Kusebauch, C. & Putnis, A. Pseudomorphic replacement of diopside during interaction with (Ni, Mg)Cl2 aqueous solutions: Implications for the Ni-enrichment mechanism in talc- and serpentine-type phases. Chem. Geol. 380, 27–40 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Austrheim, H. & Prestvik, T. Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north–central Norway. Lithos 104, 177–198 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Iyer, K., Austrheim, H., John, T. & Jamtveit, B. Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway. Chem. Geol. 249, 66–90 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: Seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kelemen, P. B. & Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. 105, 17295–17300 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Falk, E. S. & Kelemen, P. B. Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement. Geochim. Cosmochim. Acta 160, 70–90 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Obeso, J. C., Santiago Ramos, D. P., Higgins, J. A. & Kelemen, P. B. A Mg isotopic perspective on the mobility of magnesium during serpentinization and carbonation of the Oman ophiolite. J. Geophys. Res. Solid Earth 126, e2020JB020237 (2021).

  • Hansen, L. D., Dipple, G. M., Gordon, T. M. & Kellett, D. A. Carbonated serpentinite (listwanite) at Atlin, British Columbia: A geological analogue to carbon dioxide sequestration. Can. Mineral. 43, 225–239 (2005).

    Article 
    CAS 

    Google Scholar 

  • Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H. & Jamtveit, B. Massive serpentinite carbonation at Linnajavri, N-Norway. Terra Nova 24, 446–455 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Halls, C. & Zhao, R. Listvenite and related rocks: Perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun Co, Mayo, Republic of Ireland. Miner. Deposita 30, 303–313 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Menzel, M. D. et al. Ductile deformation during carbonation of serpentinized peridotite. Nat. Commun. 13, 3478 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cutts, J. A., Steinthorsdottir, K., Turvey, C., Dipple, G. M., Enkin, R. J. & Peacock, S. M. Deducing mineralogy of serpentinized and carbonated ultramafic rocks using physical properties with implications for carbon sequestration and subduction zone dynamics. Geochem. Geophys. Geosyst. 22, e2021GC009989 (2021).

  • Schwarzenbach, E. M., Früh-Green, G. L., Bernasconi, S. M., Alt, J. C. & Plas, A. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol. 351, 115–133 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steele, A. et al. Organic synthesis associated with serpentinization and carbonation on early Mars. Science 375, 172–177 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yu, S. Y. et al. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth Sci. Rev. 215, 103547 (2021).

    Article 

    Google Scholar 

  • Zhang, J., Yu, S. & Mattinson, C. G. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Res. 41, 267–289 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, X. W. et al. Geological structure characteristics and fluid activity of the gold-bearing quartz veins on the Yushishan Area, North Altyn Tagh. Geotectonica et Metallogenia (2020).

  • Liu, J. H. et al. Characteristics and formation of corundum within syenite in the Yushishan rare metal deposits in the northeastern Tibetan Plateau. American Mineralogist, accepted (2022). https://doi.org/10.2138/am-2022-8223.

  • Liu, T. & Jiang, S. Y. Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid. Am. Miner. 106, 994–1008 (2021).

    Article 
    ADS 

    Google Scholar 

  • Liu, T. et al. Titanite U-Pb dating and geochemical constraints on the Paleozoic magmatic-metamorphic events and Nb-Ta mineralization in the Yushishan deposit, South Qilian, NW China. Lithos 412–413, 106612 (2022).

    Article 

    Google Scholar 

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Morimoto, N. et al. Nomenclature of pyroxenes. Mineral. J. 14, 198–221 (1989).

    Article 
    ADS 

    Google Scholar 

  • Python, M., Yoshikawa, M., Shibata, T. & Arai, S. Diopsidites and rodingites: Serpentinisation and Ca-metasomatism in the Oman ophiolite mantle. In Dyke Swarms: Keys for Geodynamic Interpretation (ed. Srivastava, R. K.) 401–435 (Springer, 2011).

    Chapter 

    Google Scholar 

  • Lee, C.-T.A. & Lackey, J. S. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).

    Article 
    CAS 

    Google Scholar 

  • Python, M., Ceuleneer, G., Ishida, Y., Barrat, J.-A. & Arai, S. Oman diopsidites: A new lithology diagnostic of very high temperature hydrothermal circulation in mantle peridotite below oceanic spreading centres. Earth Planet. Sci. Lett. 255, 289–305 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Akizawa, N. et al. High-temperature hydrothermal activities around suboceanic Moho: An example from diopsidite and anorthosite in Wadi Fizh, Oman ophiolite. Lithos 263, 66–87 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bach, W. & Klein, F. The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos 112, 103–117 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gong, X. K. et al. The determination of Triassic ultramafic-syenite intrusive body and its geological significance, western North Qinling. Acta Petrologica Sinica 32, 177–192 (2016).

    CAS 

    Google Scholar 

  • Dyer, B., Lee, C.-T.A., Leeman, W. P. & Tice, M. Open-system behavior during pluton-wall-rock interaction as constrained from a study of Endoskarns in the Sierra Nevada Batholith, California. J. Petrol. 52, 1987–2008 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ferry, J. M. Prograde and retrograde fluid flow during contact metamorphism of siliceous carbonate rocks from the Ballachulish aureole, Scotland. Contrib. Mineral Petrol. 124, 235–254 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ferry, J. M., Ushikubo, T. & Valley, J. W. Formation of forsterite by silicification of dolomite during contact metamorphism. J. Petrol. 52, 1619–1640 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Proyer, A., Mposkos, E., Baziotis, I. & Hoinkes, G. Tracing high-pressure metamorphism in marbles: Phase relations in high-grade aluminous calcite–dolomite marbles from the Greek Rhodope massif in the system CaO–MgO–Al2O3–SiO2–CO2 and indications of prior aragonite. Lithos 104, 119–130 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ferrando, S., Groppo, C., Frezzotti, M. L., Castelli, D. & Proyer, A. Dissolving dolomite in a stable UHP mineral assemblage: Evidence from Cal-Dol marbles of the Dora-Maira Massif (Italian Western Alps). Am. Miner. 102, 42–60 (2017).

    Article 
    ADS 

    Google Scholar 

  • Velbel, M. A. Dissolution of olivine during natural weathering. Geochim. Cosmochim. Acta 73, 6098–6113 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Peuble, S. et al. Carbonate mineralization in percolated olivine aggregates: Linking effects of crystallographic orientation and fluid flow. Am. Mineralogist 100, 474–482 (2015).

    Article 
    ADS 

    Google Scholar 

  • Phillips-Lander, C. M., Legett, C., Elwood Madden, A. S. & Elwood Madden, M. E. Can we use pyroxene weathering textures to interpret aqueous alteration conditions? Yes and No. Am. Mineralogist 102, 1915–1921 (2017).

  • Xia, F. et al. Mechanism and kinetics of pseudomorphic mineral replacement reactions: A case study of the replacement of pentlandite by violarite. Geochim. Cosmochim. Acta 73, 1945–1969 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Putnis, A. Mineral replacement reactions. Rev. Mineral. Geochem. 70, 87–124 (2009).

    Article 
    CAS 

    Google Scholar 

  • Putnis, A. Why mineral interfaces matter. Science 343, 1441–1442 (2014).

    Article 
    ADS 

    Google Scholar 

  • Ruiz-Agudo, E. et al. Control of silicate weathering by interface-coupled dissolution-precipitation processes at the mineral-solution interface. Geology 44, 567–570 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rudge, J. F., Kelemen, P. B. & Spiegelman, M. A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite. Earth Planet. Sci. Lett. 291, 215–227 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Plümper, O., Røyne, A., Magrasó, A. & Jamtveit, B. The interface-scale mechanism of reaction-induced fracturing during serpentinization. Geology 40, 1103–1106 (2012).

    Article 
    ADS 

    Google Scholar 

  • Malvoisin, B., Brantut, N. & Kaczmarek, M.-A. Control of serpentinisation rate by reaction-induced cracking. Earth Planet. Sci. Lett. 476, 143–152 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Evans, O., Spiegelman, M. & Kelemen, P. B. Phase-field modeling of reaction-driven cracking: determining conditions for extensive olivine serpentinization. J. Geophys. Res. Solid Earth 125, e2019JB018614 (2020).

  • Guillot, S., Schwartz, S., Reynard, B., Agard, P. & Prigent, C. Tectonic significance of serpentinites. Tectonophysics 646, 1–19 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rouméjon, S., Andreani, M. & Früh-Green, G. L. Antigorite crystallization during oceanic retrograde serpentinization of abyssal peridotites. Contrib. Miner. Petrol. 174, 60 (2019).

    Article 

    Google Scholar 

  • Schwartz, S. et al. Pressure–temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 178, 197–210 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kodolányi, J. & Pettke, T. Loss of trace elements from serpentinites during fluid-assisted transformation of chrysotile to antigorite — An example from Guatemala. Chem. Geol. 284, 351–362 (2011).

    Article 
    ADS 

    Google Scholar 

  • Coleman, R. G. & Keith, T. E. A chemical study of serpentinization—Burro Mountain, California. J. Petrol. 12, 311–328 (1971).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Deschamps, F., Godard, M., Guillot, S. & Hattori, K. Geochemistry of subduction zone serpentinites: A review. Lithos 178, 96–127 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nasir, S., Al Sayigh, A. R., Al Harthy, A., Al-Khirbash, S., Al-Jaaidi, O., Musllam, A. et al. Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman. Chemie Der Erde – Geochemistry 67, 213–228 (2007).

  • Malvoisin, B. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth Planet. Sci. Lett. 430, 75–85 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Beinlich, A., Austrheim, H., Glodny, J., Erambert, M. & Andersen, T. B. CO2 sequestration and extreme Mg depletion in serpentinized peridotite clasts from the Devonian Solund basin, SN-Norway. Geochim. Cosmochim. Acta 74, 6935–6964 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • de Obeso, J. C. & Kelemen, P. B. Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Phil. Trans. R. Soc. A. 378, 20180433 (2020).

    Article 

    Google Scholar 

  • Palandri, J. L. & Reed, M. H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 68, 1115–1133 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Godard, M., Carter, E. J., Decrausaz, T., Lafay, R., Bennett, E., Kourim, F., de Obeso, J.-C., Michibayashi, K., Harris, M., Coggon, J. A., Teagle, D. A. H., Kelemen, P. B. & the Oman Drilling Project Phase 1 Science Party Geochemical profiles across the listvenite-metamorphic transition in the basal megathrust of the Semail ophiolite: Results from drilling at Oman DP Hole BT1B. J. Geophys. Res. Solid Earth 126(12), e2021JB022733 (2021). https://doi.org/10.1029/2021JB022733.

  • Monnier, C., Girardeau, J., Le Mée, L. & Polvé, M. Along-ridge petrological segmentation of the mantle in the Oman ophiolite. Geochem. Geophys. Geosyst. 7, Q11008 (2006).

    Article 
    ADS 

    Google Scholar 

  • Schwarzenbach, E. M., Vogel, M., Früh-Green, G. L. & Boschi, C. Serpentinization, carbonation and metasomatism of ultramafic sequences in the Northern Apennine ophiolite (NW Italy). J. Geophys. Res. Solid Earth 126, e2020JB020619 (2021).

  • Frisby, C., Bizimis, M. & Mallick, S. Hf–Nd isotope decoupling in bulk abyssal peridotites due to serpentinization. Chem. Geol. 440, 60–72 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Frisby, C., Bizimis, M. & Mallick, S. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization. Lithos 248–251, 432–454 (2016).

    Article 
    ADS 

    Google Scholar 

  • Peters, D., Bretscher, A., John, T., Scambelluri, M. & Pettke, T. Fluid-mobile elements in serpentinites: Constraints on serpentinisation environments and element cycling in subduction zones. Chem. Geol. 466, 654–666 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Raza, A., Glatz, G., Gholami, F., Mahmoud, M. & Alafnan, S. Carbon mineralization and geological storage of CO2 in basalt: Mechanisms and technical challenges. Earth Sci. Rev. 229, 104036 (2022).

    Article 
    CAS 

    Google Scholar 

  • Aradóttir, E. S. P., Sonnenthal, E. L., Björnsson, G. & Jónsson, H. Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int. J. Greenhouse Gas Control 9, 24–40 (2012).

    Article 

    Google Scholar 

  • McGrail, B. P., Spane, F. A., Amonette, J. E., Thompson, C. R. & Brown, C. F. Injection and monitoring at the Wallula basalt pilot project. Energy Procedia 63, 2939–2948 (2014).

    Article 
    CAS 

    Google Scholar 

  • Wen, G., Li, J.-W., Hofstra, A. H., Koenig, A. E. & Cui, B.-Z. Textures and compositions of clinopyroxene in an Fe skarn with implications for ore-fluid evolution and mineral-fluid REE partitioning. Geochim. Cosmochim. Acta 290, 104–123 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • [ad_2]

    Source link