Manufacturing News

Early-stage evaluation of catalyst manufacturing cost and environmental impact using CatCost

[ad_1]

  • Technology Roadmap: Energy and GHG Reductions in the Chemical Industry via Catalytic Processes (International Energy Agency, 2013).

  • Bligaard, T. et al. Toward benchmarking in catalysis science: best practices, challenges, and opportunities. ACS Catal. 6, 2590–2602 (2016).

    CAS 
    Article 

    Google Scholar 

  • Scott, S. L. A matter of life(time) and death. ACS Catal. 8, 8597–8599 (2018).

    CAS 
    Article 

    Google Scholar 

  • Murzin, D. Engineering Catalysis (De Gruyter, 2013).

  • Armor, J. N. Do you really have a better catalyst? Appl. Catal. A Gen. 282, 1–4 (2005).

    CAS 
    Article 

    Google Scholar 

  • Mitchell, S., Michels, N.-L. & Perez-Ramirez, J. From powder to technical body: the undervalued science of catalyst scale up. Chem. Soc. Rev. 42, 6094–6112 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Boren, M., Chan, V. & Musso, C. The Path to Improved Returns in Materials Commercialization (McKinsey & Co., 2012).

  • Schaidle, J. A. et al. in Catalysis Vol. 29 (eds Spivey, J. & Han, Y.-F.) 213–281 (Royal Society of Chemistry, 2017).

  • Dutta, A. et al. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors. Report no. NREL/TP-5100-62455 (National Renewable Energy Laboratory, 2015).

  • Dutta, A., Schaidle, J. A., Humbird, D., Baddour, F. G. & Sahir, A. Conceptual process design and techno-economic assessment of ex situ catalytic fast pyrolysis of biomass: a fixed bed reactor implementation scenario for future feasibility. Top. Catal. 59, 2–18 (2016).

    CAS 
    Article 

    Google Scholar 

  • Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels: 2018 State of Technology and Future Research. Report no. NREL/TP-5100-71954 (National Renewable Energy Laboratory, 2018).

  • Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels: 2019 State of Technology and Future Research. Report no. NREL/TP-5100-76269 (National Renewable Energy Laboratory, 2020).

  • Dutta, A. et al. Ex Situ Catalytic Fast Pyrolysis of Lignocellulosic Biomass to Hydrocarbon Fuels: 2020 State of Technology. Report no. NREL/TP-5100-80291 (National Renewable Energy Laboratory, 2021).

  • Tan, E. C. D. et al. Conceptual process design and economics for the production of high-octane gasoline blendstock via indirect liquefaction of biomass through methanol/dimethyl ether intermediates. Biofuel. Bioprod. Biorefin. 10, 17–35 (2016).

    CAS 
    Article 

    Google Scholar 

  • Snowden-Swan, L. J., Spies, K. A., Lee, G. J. & Zhu, Y. Life cycle greenhouse gas emissions analysis of catalysts for hydrotreating of fast pyrolysis bio-oil. Biomass Bioenergy 86, 136–145 (2016).

    CAS 
    Article 

    Google Scholar 

  • Kazi, F. K., Patel, A. D., Serrano-Ruiz, J. C., Dumesic, J. A. & Anex, R. P. Techno-economic analysis of dimethylfuran (DMF) and hydroxymethylfurfural (HMF) production from pure fructose in catalytic processes. Chem. Eng. J. 169, 329–338 (2011).

    CAS 
    Article 

    Google Scholar 

  • Dutta, A. et al. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis. Report no. NREL/TP-5100-51400 (National Renewable Energy Laboratory, 2011).

  • Tan, E. C. D. et al. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons via Indirect Liquefaction: Thermochemical Research Pathway to High-Octane Gasoline Blendstock Through Methanol/Dimethyl Ether Intermediates. Report no. NREL/TP-5100-62402 (National Renewable Energy Laboratory, 2015).

  • Anderson, J. Determining Manufacturing Costs. Chem. Eng. Prog. 27–31 (2009).

  • Anderson, J. Communicating the Cost of Product and Process Development. Chem. Eng. Prog. 46–51 (2010).

  • Anderson, J. & Fennell, A. Calculate Financial Indicators to Guide Investments. Chem. Eng. Prog. 34–40 (2013).

  • Peters, M. S. & Timmerhaus, K. D. Plant Design and Economics for Chemical Engineers 5th edn (McGraw-Hill, 2003).

  • Ulrich, G. D. & Vasudevan, P. T. Chemical Engineering Process Design and Economics 2nd edn (Process, 2004).

  • Towler, G. & Sinnott, R. K. Chemical Engineering Design – Principles, Practice, and Economics of Plant and Process Design 2nd edn (Butterworth-Heinemann, 2013).

  • Green, D. W. & Perry, R. H. Perry’s Chemical Engineer’s Handbook 8th edn (McGraw-Hill, 2008).

  • Garrett, D. E. Chemical Engineering Economics (Van Nostrand-Reinhold, 1989).

  • Vajglová, Z. et al. Synthesis and physicochemical characterization of shaped catalysts of β and Y zeolites for cyclization of citronellal. Ind. Eng. Chem. Res. 58, 18084–18096 (2019).

    Article 

    Google Scholar 

  • Devyatkov, S., Kuzichkin, N. V. & Murzin, D. Y. On comprehensive understanding of catalyst shaping by extrusion. Chim. Oggi 33, 57–64 (2015).

    Google Scholar 

  • Stiles, A. B. Catalyst Manufacture (Marcel Dekker, 1983).

  • Bankmann, M., Brand, R., Engler, B. H. & Ohmer, J. Forming of high surface area TiO2 to catalyst supports. Catal. Today 14, 225–242 (1992).

    CAS 
    Article 

    Google Scholar 

  • Tufvesson, P. R., Lima-Ramos, J., Nordblad, M. & Woodley, J. M. Guidelines and cost analysis for catalyst production in biocatalytic processes. Org. Process Res. Dev. 15, 266–274 (2011).

    CAS 
    Article 

    Google Scholar 

  • Menten, F., Chèze, B., Patouillard, L. & Bouvart, F. A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew. Sustain. Energy Rev. 26, 108–134 (2013).

    CAS 
    Article 

    Google Scholar 

  • Greig, A. L. & Carey, S. International Molybdenum Association (IMOA) life cycle assessment program and perspectives on the LCA harmonization effort. Int. J. Life Cycle Assess. 21, 1554–1558 (2015).

    Article 

    Google Scholar 

  • Sick, V. et al. The need for and path to harmonized life cycle assessment and techno‐economic assessment for carbon dioxide capture and utilization. Energy Technol. https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901034 (2019).

  • Trippe, F., Fröhling, M., Schultmann, F., Stahl, R. & Henrich, E. Techno-economic analysis of fast pyrolysis as a process step within biomass-to-liquid fuel production. Waste Biomass Valoriz. 1, 415–430 (2010).

    Article 

    Google Scholar 

  • Hu, W., Dang, Q., Rover, M., Brown, R. C. & Wright, M. M. Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels 7, 57–67 (2015).

    Article 

    Google Scholar 

  • Meyer, P. A. et al. Field-to-fuel performance testing of lignocellulosic feedstocks for fast pyrolysis and upgrading: techno-economic analysis and greenhouse gas life cycle analysis. Energy Fuels 30, 9427–9439 (2016).

    CAS 
    Article 

    Google Scholar 

  • Talmadge, M. et al. Techno-economic analysis for co-processing fast pyrolysis liquid with vacuum gasoil in FCC units for second-generation biofuel production. Fuel 293, 119960 (2021).

    CAS 
    Article 

    Google Scholar 

  • CatCost v.1.1.0 (National Renewable Energy Laboratory, 2021); https://catcost.chemcatbio.org

  • Qi, W., Sathre, R., Morrow, W. R. & Shehabi, A. Unit Price Scaling Trends for Chemical Products. Report no. LBNL-189844 (Lawrence Berkeley National Laboratory, 2015).

  • Baddour, F. G., Snowden-Swan, L., Super, J. D. & Van Allsburg, K. M. Estimating precommercial heterogeneous catalyst price: a simple step-based method. Org. Process Res. Dev. 22, 1599–1605 (2018).

    CAS 
    Article 

    Google Scholar 

  • World Catalysts (Freedonia Group, 2014).

  • Guthrie, K. M. Data and Techniques for Preliminary Capital Cost Estimation. Chem. Eng. (New York) 114–142 (1969).

  • Guthrie, K. M. Process Plant Estimating, Evaluation, and Control (Craftsman, 1974).

  • Cran, J. Improved factored method gives better preliminary cost estimates. Chem. Eng. (New York) 65–79 (1981).

  • Desai, M. B. Preliminary cost estimating of process plants. Chem. Eng. (New York) 65–70 (1981).

  • Brown, T. R. Estimating Product Costs. Chem. Eng. (New York) 86–89 (2000).

  • Ward, T. J. Economic Evaluation. In Kirk-Othmer Encyclopedia of Chemical Technology (online) (Wiley, 2001). https://onlinelibrary.wiley.com/doi/book/10.1002/0471238961

  • Seider, W. D. et al. Product and Process Design Principles: Synthesis, Analysis and Evaluation 4th edn (Wiley, 2016).

  • Super, J. D. The precious metal loop, costs from an operating company perspective. Top. Catal. 53, 1138–1141 (2010).

    CAS 
    Article 

    Google Scholar 

  • Feng, Y. & Rangaiah, G. P. Evaluating Capital Cost Estimation Programs. Chem. Eng. (New York) 22–29 (2011).

  • Griffin, M. B. et al. Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy Environ. Sci. 11, 2904–2918 (2018).

    CAS 
    Article 

    Google Scholar 

  • Ruddy, D. A. et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem. 16, 454–490 (2014).

    CAS 
    Article 

    Google Scholar 

  • Liu, C., Wang, H., Karim, A. M., Sun, J. & Wang, Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chem. Soc. Rev. 43, 7594–7623 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Iisa, K., French, R. J., Orton, K. A., Dutta, A. & Schaidle, J. A. Production of low-oxygen bio-oil via ex situ catalytic fast pyrolysis and hydrotreating. Fuel 207, 413–422 (2017).

    CAS 
    Article 

    Google Scholar 

  • Zacher, A. H. et al. Technology advancements in hydroprocessing of bio-oils. Biomass Bioenergy 125, 151–168 (2019).

    CAS 
    Article 

    Google Scholar 

  • Iida, T. et al. Encapsulation of molybdenum carbide nanoclusters inside zeolite micropores enables synergistic bifunctional catalysis for anisole hydrodeoxygenation. ACS Catal. 7, 8147–8151 (2017).

    CAS 
    Article 

    Google Scholar 

  • Chen, C.-J. & Bhan, A. Mo2C modification by CO2, H2O, and O2: effects of oxygen content and oxygen osurce on rates and selectivity of m-cresol hydrodeoxygenation. ACS Catal. 7, 1113–1122 (2017).

    CAS 
    Article 

    Google Scholar 

  • Pgm Market Report (Johnson Matthey PLC, 2019).

  • Vaughan, D. E. W. in Fluid Catalytic Cracking: Science and Technology (eds Magee, J. S. & Mitchell, M. M.) 83–104 (Elsevier, 1993).

  • Schmidt, M. The Sankey diagram in energy and material flow management. J. Ind. Ecol. 12, 82–94 (2008).

    Article 

    Google Scholar 

  • Bare, J. C., Norris, G. A., Pennington, D. W. & McKone, T. TRACI: the tool for the reduction and assessment of chemical and other environmental impacts. J. Ind. Ecol. 6, 49–78 (2003).

    Article 

    Google Scholar 

  • Bare, J. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technol. Environ. Policy 13, 687–696 (2011).

    CAS 
    Article 

    Google Scholar 

  • TRACI v.2.1 (Environmental Protection Agency, 2012); https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-traci

  • Celik, I., Mason, B. E., Phillips, A. B., Heben, M. J. & Apul, D. Environmental impacts from photovoltaic solar cells made with single walled carbon nanotubes. Environ. Sci. Technol. 51, 4722–4732 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ambrose, H. & Kendall, A. Understanding the future of lithium: part 2, temporally and spatially resolved life‐cycle assessment modeling. J. Ind. Ecol. 24, 90–100 (2019).

    Article 

    Google Scholar 

  • Ryberg, M., Vieira, M. D. M., Zgola, M., Bare, J. & Rosenbaum, R. K. Updated US and Canadian normalization factors for TRACI 2.1. Clean Technol. Environ. Policy 16, 329–339 (2013).

    Article 

    Google Scholar 

  • Saaty, T. L. How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48, 9–26 (1990).

    Article 

    Google Scholar 

  • Schreier, M. & Regalbuto, J. R. A fundamental study of Pt tetraammine impregnation of silica 1. The electrostatic nature of platinum adsorption. J. Catal. 225, 190–202 (2004).

    CAS 
    Article 

    Google Scholar 

  • Miller, J. T., Schreier, M., Kropf, A. J. & Regalbuto, J. R. A fundamental study of platinum tetraammine impregnation of silica 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. J. Catal. 225, 203–212 (2004).

    CAS 
    Article 

    Google Scholar 

  • Aspen Plus (Aspen Technology, Inc., 2017).

  • Lang, H. J. Cost Relationships in Preliminary Cost Estimation. Chem. Eng. (New York) 117–121 (1947).

  • Lang, H. J. Simplified Approach to Preliminary Cost Estimates. Chem. Eng. (New York) 112–113 (1948).

  • SimaPro v.8.5.2.0 (Product Ecology Consultants, 2016).

  • State-level Average Annual Gasoline Expenditures per Capita Ranged from $400 to $1,400 (U.S. Energy Information Administration, 2021); https://www.eia.gov/todayinenergy/detail.php?id=40893

  • Paasikallio, V. et al. Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run. Green Chem. 16, 3549–3559 (2014).

    CAS 
    Article 

    Google Scholar 

  • [ad_2]

    Source link